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Spin-orbit effects have been neglected for the MP2 dissociation 
energies, since these are assumed to be small for these com­
pounds.513 Only AuMe2" shows a relativistic increase in the 
dissociation energy. The trend in dissociation energy is opposite 
to the trend in force constants discussed above, i.e., Z)6(HgMe2) 
> D6(TlMe2

+) > Z)6(PbMe2
2+). The dissociation energy OfC2H6 

— 2CH3 has been calculated to be 395 kJ/mol at the MP2 level 
(exp 368 kJ/mol28). According to the reaction [M(CH3)2]" — 
M" + C2H6 (e.g., n = -1 for M = Au), the methyl complexes are 
not very stable at the relativistic level (Table I). Also entropy 
effects clearly would shift the reaction to the right hand side. This 
agrees with the fact that Hg-C bonds in organomercury com­
pounds can be easily broken homolytically. On the other hand, 
such compounds are relatively air- and water-resistant and 
therefore kinetically stable. The calculated MP2 dissociation 
energy for HgMe2 of 286 kJ/mol is in relatively good agreement 
with the experimental value of 234 kJ/mol. 
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We report the existence of a peroxyl radical, analogous to a 
proposed mechanistic intermediate, in samples of the metastable 
purple form of soybean lipoxygenase-1. This enzyme2 catalyzes 
the production of 13-hydroperoxy-9,11 -m^a/w-octadecadienoic 
acid (13-HPOD3) from linoleic acid. Mammalian lipoxygenases 
catalyze similar reactions of arachidonic acid and are important 
in the production of leukotrienes and lipoxins, messengers involved 
in the inflammatory and immune responses.4 One hypothetical 
mechanism of the oxygenation reaction, similar to that of the 
autoxidation of polyunsaturated fatty acids,5 proposes that the 
active-site Fe3+ oxidizes the 1,4-diene unit of the substrate to a 
pentadienyl radical, which should react smoothly with dioxygen, 
giving a peroxyl radical.6 Reduction by the iron (now Fe2+) would 
result in the peroxide anion. A second mechanism proposes that 
the Fe3+ facilitates the deprotonation of the substrate, yielding 
a Fe3+-alkyl complex. Insertion of dioxygen into the Fe-C bond, 
then, is envisioned as giving the coordinated peroxide anion.7 

Radicals derived from the substrate have been trapped in ex­
periments in which the reaction is prevented from going to com­
pletion by anaerobiasis.8 However, such radicals may result from 
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Figure 1. EPR spectra of "purple" lipoxygenase generated by addition 
of linoleic acid under oxygen, (a) Natural-abundance O2. (b) 36% 
enriched 17O2. Samples prepared as stated in the text. EPR parameters: 
microwave frequency, 9.52 GHz; power, 1 mW; modulation amplitude, 
0.5 mT; temperature, 10 K. 

homolytic Fe-C bond cleavage of the proposed Fe3+-alkyl complex 
as well as from simple release of free-radical intermediates.7 

Recently, broad EPR spectra consistent with fatty acid peroxyl 
radicals were reported in samples of lipoxygenase under turnover 
conditions at room temperature.9 In that case, the peroxyl radical 
was thought to be in solution, rather than enzyme-bound, and thus 
conclusions of mechanistic relevance are somewhat tenuous. 

Treatment of ferric soybean lipoxygenase-1 with 13-HPOD or 
with linoleic acid and oxygen results in the formation of a met­
astable purple enzyme.10 This form reverts slowly to the native 
ferric enzyme with release of 12,13-epoxy-l 1-hydroxy-9-octade-
canoic acid," suggesting that it represents an intermediate complex 
on the isomerization pathway. The origin of the purple color, 
endowed by a band in the visible spectrum at 585 nm, has never 
been adequately explained, but CD spectra suggest that the en­
vironment of the metal ion is significantly different in the native 
ferric and purple states.12 

EPR spectra13 of purple lipoxygenase prepared by treating 
ferrous or ferric lipoxygenase14 with linoleic acid in the presence 
of oxygen at 4 0C show an axial signal in the g = 2 region (Figure 
la). When the experiments were repeated with 36% 170-enriched 
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oxygen (Mound Laboratories), the spectra revealed strong coupling 
to two 17O nuclei (Figure lb). The g values and 17O hyperfine 
splitting parameters obtained by simulating the spectra (g = 2.039, 
2.012, 2.003; /Ix(

17O) = 9.9, 6.1 mT)16 agree well with those 
published for oleyl peroxyl radical (g = 2.035, 2.008, 2.003; 
Ax(

11O) = 9.5, 5.9 mT).17 Thiol peroxy radicals (RSO2-)
18 and 

the superoxide anion19 have very similar EPR parameters, but the 
difference between the 17O hyperfine splittings of the two oxygen 
nuclei is significantly smaller in the former (AxC

1O) = 8.1, 6.4 
mT) and negligible in the latter. The large (3.8 mT) difference 
we observe suggests that this spectrum represents an alkyl peroxyl 
radical, logically 13-dioxy-9,l 1-octadecadienoic acid. 

Changes in the line shape and apparent hyperfine splittings 
begin to be seen as the temperature is raised through about 150 
K (data not shown). In contrast, the spectra of 13-dioxy-9,l 1-
m,r/-a«5-octadecadienoic acid in a protein-free frozen matrix begin 
to show similar effects at about 110 K.17 These spectral changes 
are thought to arise from the onset of both rotation about the C-O 
bond and molecular tumbling; thus, the peroxyl radical in the 
enzyme sample appears to be more conformational^ constrained 
than that in the frozen matrix and probably is indeed bound to 
the enzyme. 

After a few minutes at 4 0C, the sample recovers the visible 
and EPR spectra of the native ferric enzyme;10 in particular, the 
spectrum of the peroxyl radical is no longer apparent. During 
this time, the intensities of the 585-nm absorption band and the 
peroxyl radical EPR spectrum decline in parallel. Treatment with 
more linoleic acid and oxygen regenerates both the purple color 
and the peroxyl radical signal. On the other hand, addition of 
10 mM ethanol (known to bind in or near the active site of 
lipoxygenase20) eliminates the radical signal without affecting the 
intensity of the purple color. Thus, the purple state appears to 
be necessary but not sufficient for the existence of the radical. 

The mechanistic origin and importance of the peroxyl radical 
are not certain. We hypothesize that it is either a trapped in­
termediate in the oxygenation pathway or the result of reduction 
of the active-site Fe3+ by endogenously produced 13-HPOD. The 
stability of the radical at 4 0C is inconsistent with its being an 
intermediate of the oxygenation reaction (reduction of an inter­
mediate peroxyl radical must occur at a rate > &cat > 200/s at 
25 0C2') unless that reduction is driven by dissociation of the 
product hydroperoxide from the enzyme. In that case, the rela­
tively high enzyme concentrations used in these experiments (in 
excess of 0.1 mM) may favor formation of the lipoxygenase-
13-HPOD complex, which then may seek an equilibrium between 
Fe3+-ROOH and Fe2+-ROO*. The relatively high reduction 
potential of the active-site iron («0.6 V vs NHE) favors this 
possibility.15 We are testing it by quantitation of the Fe3+ and 
peroxyl radical EPR signals as a function of enzyme and linoleic 
acid concentrations. If indeed this latter explanation is true, it 
will provide strong evidence for the existence of radical inter­
mediates in the mechanism of fatty acid oxygenation by lip­
oxygenase. 
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Bending and folding of hydrocarbon chains has been probed 
by using fluorescence methods since the discovery by Hirayama1 

of the intramolecular excimer formation process in 1,3-di-
phenylpropanes. The dynamic flexibility of hydrocarbon chains 
depends upon the chemical type and length of the chain, the solvent 
or environment in which it is immersed, and the temperature.2 

Cyclizations of polymer chains have been examined by this 
method, especially using a,a>-dipyrenyl probes: poly(styrene),3 

poly(ethylene oxide),4 poly(tetramethylene oxide),5 poly(di-
methylsiloxane),6 and poly(bisphenol A-diethylene glycol car­
bonate).7 Fluorocarbon polymers constitute an industrially im­
portant class of polymers whose properties are quite distinct from 
those of the hydrocarbon analogues.8 We report kinetic data on 
a fluorocarbon and hydrocarbon pair of model compounds that 
show significant differences in the rates and kinetic barriers to 
cyclization between simple -(CFj)8- and -(CHj)8- chain seg­
ments. 

The 18-atom-chain species bis(l-pyrenylmethyl) dodecanedi-
carboxylate (l)2d and analogue 2 [l,8-bis[[(l'-pyrenylmeth-
oxy)carbonyl]ethyl]perfluorooctane] containing a C8F16 core in 
the center of the molecule were prepared by dicyclohexylcarbo-
diimide coupling of 1-pyrenylmethanol with the corresponding 
hydrocarbon and fluorocarbon diacids. Monopyrene-containing 
model compounds 3 and 4 were obtained similarly from the 
monomethyl ester acids. Steady-state fluorescence spectra10 of 
1 and 2 in 2-methyltetrahydrofuran (MeTHF) at various tem­
peratures in the range -10 to +50 0C (Xex = 340 nm) are shown 
in Figure 1. Several features are notable. First, at all tem­
peratures, both structured pyrene-localized emission (LE) at short 
wavelength (370-425 nm) and broad, structureless emission 
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